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Abstract. Elementary units characterized by a threshold-linear (graded) response have 
been argued to model single neurons in auto-associative networks more realistically than 
binary units. The different way local activity is constrained in the two representations is 
shown here to have important consequences For the spin-glass-like properties of otherwise 
equivalent systems. In particular, in contrast with their binary counterparts, the threshold- 
linear Sherrington~Kirkpatrick model is stable with respect to replica symmetry-breaking 
(nse ) ,  while threshold-linear fully connected neural networks with covariance learning are 
RSB unstable only in a very restricted region o l  their phase diagram. Whether or not 
spin-glass effects dominate attractor dynamics is suggested to affect considerably, among 
other things, the ability a l  auto-associative memories to encode new information. 

1. Introduction 

Since Amit, Gutfreund and Sompolinsky (AGS) [ l ]  analysed the Little-Hopfield [2 ,3]  
model for auto-associative memory by adapting methods originally developed for 
studying spin-glasses, the appearance of spin-glass effects has been considered one of 
the typical features of the low-noise long-time limit behaviour of associative networks 
with feedback. In networks characterized by symmetric interactions, spin-glass freezing 
occurs, in a low noise phase, when the associated energy landscape is very ‘rough at 
the microscopic level. This roughness, induced by the quenched disorder in the 
interactions, may, if fast, ‘thermal‘ noise is low, carry over to the free-energy landscape. 
Then the system becomes unable to escape one of an exponentially large number of 
disorderly placed tiny valleys, and a pure thermodynamic state is characterized by a 
probability distribution confined to a few configurations. 

Spin-giass freezing unaoubtediy aifects the retrieval dynamics ofrhe memory. More 
importantly, it has been considered to undermine its ability to select and store meaning. 
ful incoming information. Parisi [4] has argued that if the network freezes into a 
spin-glass state while subject to an external stimulus varying in time (to be interpreted 
as meaningless), just as it freezes into a retrieval state when subject to a steady (and 
therefore meaningful) one, it will mistakenly store in the synaptic connections the 
irrelevant firing pattern characterizing that particular spin-glass slate. He has then 
suggested that this may be avoided if the interactions are asymmetric and, as a result, 
the system is less prone to freeze into restricted portions of phase space. This suggestion 
has raised the issue of how sensitive networks with asymmetric connections are to 
spin-glass effects, an issue which has been addressed both in the context of purely 
disordered systems [ 5 ]  and in the specific one of auto-associative memories [6,7]. 
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However, are these considerations, even in the case of symmetric interactions, valid 
in general or only in the somewhat limited framework of systems made up of binary 
units, and closely analogous to magnetic spin systems? This is an important issue, in 
particular as it has been proposed [8] that neuronal firing behaviour in real auto- 
associative systems may be more realistically modelled by ( a )  representing graded 
response at the single unit level and ( b )  ascribing the control of firing activity to a 
global mechanism rather than to single unit saturation effects. It is natural to suppose 
ihai allowing for coniinuousiy graded ouipui siaies of ihe eiemeniary units (feature 
( a ) )  will smooth the free-energy landscape and in fact this has been shown [9, IO] to 
result in a decrease in the (still exponential) number of spin-glass metastable states. 
By also including feature ( b ) ,  one is likely to smooth the landscape even further, as 
one ends up  with a system in which there is a local constraint on low activities (in 
that each unit will only fire at positive rates, so that there is a threshold at zero) but 
only a global constraint on  high activities (in that individual saturation levels are 
irrelevant). It is therefore pertinent to ask what will remain of the spin-glass behaviour 
in a physiologically plausible auto-associative network which has both features ( a )  
and (b ) t .  This is studied here by considering what is possibly the simplest network 
model of that type [12], one in which neurons are formally represented as threshold- 
linear units [13]. 

When computing the free-energy averaged over different quenched realizations of 
the interactions, using the replica method, the onset of spin-glass freezing is manifested 
by the spontaneous breaking of the symmetry between different replicas. This occurs 
at the deAlmeida-Thouless (AT) [ 141 line in the phase diagram, where there is a change 
in the sign of the eigenvalue of the stability matrix of the free-energy along a particular 
direction in replica space, the so called ‘replicon’ mode. In this paper, the sign of the 
rep!ican mode is evzlczted, fo!!owinp AGS, for two systerr?~: the !hresho!d-!inezr 
analogue of the Sherrington-Kirkpatrick (SK) [ 151 disordered model; and the threshold- 
linear fully connected auto-associative network ( A N ) ,  with symmetric connections 
determined by a covariance learning rule [12]. 

2. Definition of the models 

The systems considered here are made up  of N units whose output state, denoted K, 
i = 1,. . . , N, is determined at equilibrium by an input variable, the ‘local field’ h,, 
according to a threshold-linear transfer function 

where g is a gain parameter and Thr a threshold. hi in turn depends [12] on the activity 
configuration { y } :  

where the linear summation in the first term is mediated by the ‘synaptic connection’ 
coefficients J > ,  whereas the second term is some function b ( x )  of the average network 

t One might compare with the behaviour o f  globally constrained disordered systems. such as the spherical 
model [ 5 ,  I l l .  
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activity, that can be interpreted as a uniform activity-dependent threshold resulting in 
a global constraint on the activity level itself. For simplicity, no external non-uniform 
fields are considered here, although it  would be straightforward to include terms of 
that type as well. 

In the AN model, the JE encode p learnt activity patterns qy, p = I , .  . . , p through 
a covariance [ 161 learning rule 

The { v y }  are taken as drawn at random, independently for each i and p, from a 
common probability distribution P.,, such that its first moment is a, vP,, d v  = a, while 
its second moment is denoted as a'T,, v2P, d v - a 2 =  a2To [12]. The parameter 
a = P I N  measures the loading of the memory. 

In the SK model, the J ;  are themselves taken as quenched random variables, 
independently for each pair ( i , j )  from a Gaussian distribution with mean zero and 
variance a T $  N. This particular choice is made to ease comparisons, as then the first 
two moments of the quenched distribution for each J ;  are equal in the AN and SK 

models. One should note, though, that the higher moments will be different, and also 
that in the AN model there will he correlations across different J i s ,  which are absent 
by construction in the S K  model. Quenched averages, whether over the (77) or over 
the { J ; }  distribution, are here denoted as ((.)). 

Although the quantity of interest is the AT instability eigenvalue as a function of 
g, when the deterministic relation ( I )  holds, it is convenient to introduce in the 
intermediate stages a 'temperature' T = p- '  parametrizing the amount of stochastic 
noise, and eventually let T + 0 .  This can be done [I21 by associating with the state of 
each unit the weight 

m (  V)= ks(V)+e-"',,,tv2/2"' (4) 

where k is the relative weight of the 0 state and S(x) is Dirac's delta function. 
Thermodynamic averages, denoted as ( .  ), involve therefore summing over network 
configurations, with a weight per configuration exp(-pH) n, m (  V , ) ,  where 

and B ( x ) = j "  b(x')dx'. The distribution of activities at thermal equilibrium can be 
monitored by the order parameters 

. N  

and, in  particular for the AN model, the correlation with the various stored pattern by 
the overlaps 
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Note that y, -x2 is a measure of the variance in the distribution of activity among 
the units, while yo-y, measures the correlation among the various configurations 
concurring in the thermodynamic state. 

3. The free-energy in replica space 

The limit of interest is N + m  (with LY finite), in which case mean-field theory is 
expected to be exact. An expression for the free-energy averaged over the quenched 
distributions determining the { J ; }  can be derived with the standard replica formalism, 
as in [12], and the result is of the form 

where the definitions of the parameters 

are enforced by the conjugated parameters t’, t”, rY6 and y,S,. . . index the n replicas. 
In the A N  model, if po  patterns have condensed macroscopically, i.e. i’spo# 0, 

i I ’ > P , =  0, 

with Y the matrix with elements y”. In the SK model, instead, all the terms containing 
Pr and PY are absent, the quenched averages ((.)) have already been performed to 
the end and forfo one has simply 

f iK({x ,y})=E B ( x y ) - 7  1 (yYb)2. (11) 
Y 7.8 

Following Ar and AGS, the stability of the replica symmetric solution 
x y = x  x”’ = x* YY1=Yo Y y a = Y l  ( Y  # 8 )  
t Y = t  / ” Y  = 1’ r y y  = ro rr6 = r, (Y # 8 )  

is studied by considering the replicon mode, which corresponds to a fluctuation which 
affects only y” and r” for y #  8, of the form 

&yT’ = A Y 6  Sr” = C A T s  (12) 

with 

= A  7. 8 # 1,2 

8 # 1 , 2  
3 -n  

2 
A‘s = = _ A  
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Note that there are only n ( n  - 1)/2 independent variables yy6, as yy* = y a y  and that 
the same holds for r"'. Denoting with ( y S )  the unordered pair (7, S), the part of the 
stability matrix which determines the eigenvalue of the replicon mode is a n ( n  - 1)  x 
n ( n  -1)  submatrix of elements 

In the SK model, - - -apT$(ya, , lscl  whereas in the A N  model there are, in the 
replica symmetric state, three types of matrix elements depending on whether 
none, one or two replicas of the pair ( y S )  equal those of the pair ( E < ) .  They are [ I ] :  

A'Y""''1~ - -aPT:2C: 

AIY6).("1= - 

Alyfil,(yfil= - uPT:(Ci+C:)  

aPTZCif  CJC, (13) 

with 

CO= C,+[I - ~ " P ( Y " - Y X i .  

The matrix elements B'y"''l can be written as 

B'y""'''= -4P(([( V'V'V'V') - ( VyV6)( V'V'])) 

where the ( . )  average is using the Hamiltonian H ,  and, as with the A'"61,'e'1, there are 
just three possible values they take, when computed in the replica symmetric state. 

The eigenvalue equations reduce to the pair 
( A ~ ' ~ ~ I , ~ ~ S I - ~ A I ~ ~ I . ( ~ ~ ) + A ( ~ ~ I . ( P ~ ) )  - 2 e  = A 

- 2 +  c ( B ( m Y 8 1  -2B(A(?t  I +  @?81,Ml )  = (16) 

which determines two eigenvalues 

4. Stability of the replica symmetric solutions 

The aim is to evaluate the sign of A ,  in the limit T - 0 ,  as a function of the gain g,  
for the SK and AN threshold-linear sysLems. In that it sets the slope of the transfer 
function at T = 0, the role of the gain is somewhat analogous (although not equivalent) 
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to that of the inverse temperature in a model of binary units. Not surprisingly, the 
natural scale for g turns out to be T , , ' ,  where T,,, which has been previously defined 
and which in the A N  case depends on the prohahility distribution P,], is the natural 
temperature scale when binary units are used. As a result of this analogous role, neither 
the S K  nor the AN system is expected to exhibit spin-glass behaviour in the low gain 
regime, gT, , c  I ,  where replica symmetric solutions of the saddle-point equations for 
the free-energy should be stable. What happens for larger values of gT,,? 

In the AN case, two types of replica symmetric solutions that can he considered 
are the retrieval solutions ( R S )  corresponding to one pattern ( p ( ] =  I )  being retrieved 
from the memory, and  the uniform (disordered) solution (us), in which no  pattern is 
singled out, po=O. In the S K  case, no pattern structure is present, and there is only a 
DS saddle-point. 

In the T + O  limit, the relevant AN saddle-point equations for the RS reduce 
to (cf [8, 121): 

where 

and the gain g is renormalized to g', with 

I / g ' =  1 / g - a T o $ / ( l - $ ) .  

The same equations describe the AN DS phase, with the provision (which for simplicity 
will be  assumed in the following) that 2' = 0 and  that no quenched averaging (( .)) (over 
P , , ( q ' ) )  remains to be  done. With the same provision, the second and  third of equations 
(19) also describe the S K  DS phase, whereas the fourth is changed to 

P 2  = OYQ (22) 

l / g ' =  l / g - a T &  (23) 

and the gain is renormalized to 

It is convenient to introduce the two signal-to-noise ratios 

w = ( b ( x ) - i ' -  T+,,)I(Top) (uniform) 

v = i ' / ( T o p )  (specific) 
(24) 
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and the averages 

A2( w, U )  =L ((( :- 1) I+ Dz ( w + U$ - 2)) 

A,(w, U )  =((I+ Dz( w +  u:-zj2) 

0 To 

where the superscript+indicates that the 2-average is restricted to  z < w +  u v / a .  Then 
the AN RS corresponds [8,12] to the pair (w, v) that satisfies 

A:( w, U )  - aA3( w, U )  = 0 

with $ determined by w and U as 

and in the SK solution again U = O  and w is given by 

a(gTd2[A,(w,  0 )  -A,(w, 0 )  +A,( W, O)I2-A,( W, O ) = O  (30) 

with 

Turning now to  the eigenvalues A , ,  one finds that in the T+O limit 

li = -4g‘$/ To. 

Using equation (17), one sees that, as T+O, A - + @ A  < O  irrespective of g, indicating 
that its sign has to be corrected by a proper deformation of the integration contour 
[I]. A + >  0, instead, for AB < 4, which can be checked to be always the case if the gain 
is sufficiently low. The replica symmetric solutions are thus unstable to  RSB whenever 
Ai > 4. 
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In the SK case one finds 

1-41 - 4 a ( g T d 2 ( A 2 ~ A , )  

1 +d1-4a(gTo)’(A,-A,) 
A E = 4  s 4  

and the disordered solution is always stable to RSB, for any value of g and U. In fact, 
the stability is only marginal on the line o ( g T J 2 = 5 ,  where one has w = O  and 
a(gTJ2(A2-Al) =$. On that peculiar line, exactly half the units happen to be below 
threshold and half above threshold, and apparently the high entropy of such a situation 
brings the ergodic solution on the verge of breaking down into a spin-glass phase. 

In the AN case, considering retrieval solutions first, one has to bear in mind that 
not only the value of AE, hut also the region in the (g, a)-plane in which (replica 
symmetric) RS exist at all, depends on the distribution P, [12], which makes it dificult 
to discuss the stability of these solutions in general terms. What can be shown to hold 
in general is that RS states appear, in the a + O  limit, only for g> l/To, but the range 
in a in which they exist depends very strongly on the quenched pattern distribution, 
and can extend to very high a values if sparse coding is used [12]. Nevertheless, an 
extensive numerical search has failed to produce a retrieval solution with a region of 
instability, and it might indeed be possible to show analytically that such solutions 
are always RSB stable when they exist. 

Finally, the A N  disordered solution does become unstable to RSB, albeit in a very 
restricted region of the (g, a)-plane. The border of this region can be easily found 
solving numerically the equation (equivalent to = 4) 

OlgToJ, = (1  - J, - WToJ,) (33) 

with JI given by equations (28) and (29). The whole instability region is constrained 
by the limits (valid irrespective of P,,) g > 2/ To, a < 0.0485. 

These results are summarized in the phase diagrams of figure 1. A single type of 
purely disordered, non-spin-glassy solution describes the static behaviour of the SK 
threshold-linear model. The only feature of its phase diagram, which could in fact be 

I I 

DS 

0.0 - 
0.0 0 2  0.4 o( 0.0 0.2 0.4 a 0.0 - 

Figure 1. Phase diagram for the threshold-linear SK (left) and AN (right) models, in the 
(8. *)-plane. See text. 
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displayed as a unidimensional diagram in the reduced variable a(gT,)*, is the line of 
marginal RSB stability previously mentioned. Several types of thermodynamic solutions, 
instead, characterize the behaviour of the auto-associative network model. Alongside 
purely disordered, uniform solutions, ordered retrieval solutions appear when the gain 
is sufficiently high, in  a region that, depending mainly on the sparseness of the pattern 
distribution, can extend to values of (Y in the tens and hundreds (in addition, solutions 
corresponding to mixture of several patterns may appear for certain choices of P, [171 
for very high gain). All these solutions are replica symmetric and non-spin-glassy. The 
disordered solution, however, becomes RSB unstable for very small a and g > 21 TO, 
yielding place to a spin-glass type of behaviour (whereas the retrieval solutions remain 
RSB stable). In this restricted region a stable, replica non-symmetric disordered solution 
may he derived using Parisi’s ultrametric ansatz [18]. 

5. Discussion 

These calculations indicate that spin-glass effects are, essentially, irrelevant to the 
long-time limit behaviour of auto-associative memory networks in which neurons are 
represented as threshold-linear units and in which activity is regulated by a global 
constraint. This statement, shown here to be true in the case of a fully connected 
network with a simple covariance (symmetric) learning rule and, in the absence of 
specific external inputs, can be expected to hold a fortiori when (a)  the connectivity 
is not full but sparse and ( b )  external inputs are present; and can also be expected to 
hold when a different kind of learning determines the efficacy of synaptic connections. 
Thus, if one accepts that threshold-linear units, with a global constraint on their activity 
ievei, provide a more reaiistic model of neuronal activity in auto-associative memories 
than binary units, one may safely conclude that their attractor dynamics, when indeed 
convergence to a fixed-point attractor occurs, leads to well defined and unique pure 
states. Moreover such pure states are in fact represented, at T =  0, by single ‘configur- 
ations’ (as seen from the fact that yo = y ,  in this limit), i.e. each unit stabilizes, for any 
given set of external inputs and synaptic efficacies, at its own unique activity level. 

Consider now a network in ihe process OF encoding new incoming informaiion, 
carried by a set of external inputs {hExT), whose distribution over the units is unrelated 
to the firing patterns previously stored on the synaptic efficacies. If the dynamics is 
such that the system converges to a fixed-point attractor, and barring the possibility 
that it may mistakenly lapse into a retrieval or a mixture state, then a specific firing 
pattern [ y ]  will result, independently of initial conditions, from the specific input 
{hEXT). Thus {hEXT] and the current {IF} uniquely determine {V.). To quantify the 
extent to which it is the information expressed by {hFXT} rather than that contained 
in { I ; ]  that determines the new firing pa:.ern to be stored, one may introduce an 
appropriate information measure, which involves a quenched average over the synaptic 
efficacies. This is done in a related paper [19], and it is shown to yield important 
constraints on the relative strengths of external inputs (with respect to intrinsic connec- 
:ions) which “:e ceccssary 1” B rea! memory of this type !o store reesonable ~mocnts 
of new information. It is, however, the present result which validates the way these 
constraints are evaluated. If spin-glass effects were present, {hEXT] and { J ; }  would not 
fix {V,], as the systems would, depending cm initial conditions, end up in one of 
exponentially many possible configurations { V;).  The uncertainty associated with this 
effective indeterminacy would be reflected, as  indeed is the case with a system of binary 
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units, in a drastic decrease in the amount of information that could be stored for each 
new pattern. 
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Note added. In  an interesting paper [20], Hadeler and Kuhn have shown that another threshold-linear 
coupled system [13], in fact equivalent to the present one, has a unique solution if and only if the matrix 
1 - g J  is positive definite. Therefore a calculation of its eigenvalues (possibly using the replica trick [21]) 
might yield results equivalent to those derived here. 
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